Autor: |
Tijana Randic, Stefano Magni, Demetra Philippidou, Christiane Margue, Kamil Grzyb, Jasmin Renate Preis, Joanna Patrycja Wroblewska, Petr V. Nazarov, Michel Mittelbronn, Katrin B.M. Frauenknecht, Alexander Skupin, Stephanie Kreis |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Cell Reports, Vol 42, Iss 7, Pp 112696- (2023) |
Druh dokumentu: |
article |
ISSN: |
2211-1247 |
DOI: |
10.1016/j.celrep.2023.112696 |
Popis: |
Summary: Treatment options for patients with NRAS-mutant melanoma are limited and lack an efficient targeted drug combination that significantly increases overall and progression-free survival. In addition, targeted therapy success is hampered by the inevitable emergence of drug resistance. A thorough understanding of the molecular processes driving cancer cells’ escape mechanisms is crucial to tailor more efficient follow-up therapies. We performed single-cell RNA sequencing of NRAS-mutant melanoma treated with MEK1/2 plus CDK4/6 inhibitors to decipher transcriptional transitions during the development of drug resistance. Cell lines resuming full proliferation (FACs [fast-adapting cells]) and cells that became senescent (SACs [slow-adapting cells]) over prolonged treatment were identified. The early drug response was characterized by transitional states involving increased ion signaling, driven by upregulation of the ATP-gated ion channel P2RX7. P2RX7 activation was associated with improved therapy responses and, in combination with targeted drugs, could contribute to the delayed onset of acquired resistance in NRAS-mutant melanoma. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|