An Artificial Intelligence Mechanism for the Prediction of Signal Strength in Drones to IoT Devices in Smart Cities

Autor: Mohamad Reda A. Refaai, Vinjamuri S. N. C. H. Dattu, H. S. Niranjana Murthy, P. Pramod Kumar, B. Kannadasan, Abdi Diriba
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Advances in Materials Science and Engineering, Vol 2022 (2022)
Druh dokumentu: article
ISSN: 1687-8442
DOI: 10.1155/2022/7387346
Popis: Drones, the Internet of Things (IoT), and Artificial Intelligence (AI) could be used to create extraordinary responses to today’s difficulties in smart city challenges. A drone, which would be effectively a data-gathering device, could approach regions that become complicated, dangerous, or even impossible to achieve for individuals. In addition to interacting with one another, drones must maintain touch with some other ground-based entities, including IoT sensors, robotics, and people. Throughout this study, an intelligent approach for predicting the signal power from a drone to IoT applications in smart cities is presented in terms of maintaining internet connectivity, offering the necessary quality of service (QoS), and determining the drone’s transmission range offered. Predicting signal power and fading channel circumstances enables the adaptable transmission of data, which improves QoS for endpoint users/devices while lowering transmitting data power usage. Depending on many relevant criteria, an artificial neural network (ANN)-centered precise and effective method is provided to forecast the signal strength from such drones. The signal strength estimations are also utilized to forecast the drone’s flight patterns. The results demonstrate that the proposed ANN approach has an excellent correlation with the verification data collected through computations, with the determination of coefficient R2 values of 0.97 and 0.98, correspondingly, for changes in drone height and distances from a drone. Furthermore, the finding shows that signal distortions could be considerably decreased and strengthened.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje