Remote sensing of Trichodesmium spp. mats in the western tropical South Pacific
Autor: | G. Rousset, F. De Boissieu, C. E. Menkes, J. Lefèvre, R. Frouin, M. Rodier, V. Ridoux, S. Laran, S. Bonnet, C. Dupouy |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Biogeosciences, Vol 15, Pp 5203-5219 (2018) |
Druh dokumentu: | article |
ISSN: | 1726-4170 1726-4189 |
DOI: | 10.5194/bg-15-5203-2018 |
Popis: | Trichodesmium is the major nitrogen-fixing species in the western tropical South Pacific (WTSP) region, a hot spot of diazotrophy. Due to the paucity of in situ observations, remote-sensing methods for detecting Trichodesmium presence on a large scale have been investigated to assess the regional-to-global impact of this organism on primary production and carbon cycling. A number of algorithms have been developed to identify Trichodesmium surface blooms from space, but determining with confidence their accuracy has been difficult, chiefly because of the scarcity of sea-truth information at the time of satellite overpass. Here, we use a series of new cruises as well as airborne surveys over the WTSP to evaluate their ability to detect Trichodesmium surface blooms in the satellite imagery. The evaluation, performed on MODIS data at 250 m and 1 km resolution acquired over the region, shows limitations due to spatial resolution, clouds, and atmospheric correction. A new satellite-based algorithm is designed to alleviate some of these limitations, by exploiting optimally spectral features in the atmospherically corrected reflectance at 531, 645, 678, 748, and 869 nm. This algorithm outperforms former ones near clouds, limiting false positive detection and allowing regional-scale automation. Compared with observations, 80 % of the detected mats are within a 2 km range, demonstrating the good statistical skill of the new algorithm. Application to MODIS imagery acquired during the February-March 2015 OUTPACE campaign reveals the presence of surface blooms northwest and east of New Caledonia and near 20° S–172° W in qualitative agreement with measured nitrogen fixation rates. Improving Trichodesmium detection requires measuring ocean color at higher spectral and spatial (Trichodesmium dynamics, including aggregation processes to generate surface mats. Such sub-mesoscale aggregation processes for Trichodesmium are yet to be understood. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |