Autor: |
Xiaoping Sun, Xingshuai Ren, Jie Zhang, Yunzhi Nie, Shan Hu, Xiao Yang, Shoufeng Jiang |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Frontiers in Genetics, Vol 13 (2022) |
Druh dokumentu: |
article |
ISSN: |
1664-8021 |
DOI: |
10.3389/fgene.2022.899340 |
Popis: |
Identifying biomarkers of Multiple Sclerosis is important for the diagnosis and treatment of Multiple Sclerosis. The existing study has shown that miRNA is one of the most important biomarkers for diseases. However, few existing methods are designed for predicting Multiple Sclerosis-related miRNAs. To fill this gap, we proposed a novel computation framework for predicting Multiple Sclerosis-associated miRNAs. The proposed framework uses a network representation model to learn the feature representation of miRNA and uses a deep learning-based model to predict the miRNAs associated with Multiple Sclerosis. The evaluation result shows that the proposed model can predict the miRNAs associated with Multiple Sclerosis precisely. In addition, the proposed model can outperform several existing methods in a large margin. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|