Autor: |
Kanyanat Lamanchai, Deborah L. Salmon, Nicholas Smirnoff, Pornsawan Sutthinon, Sittiruk Roytrakul, Kantinan Leetanasaksakul, Suthathip Kittisenachai, Chatchawan Jantasuriyarat |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Agronomy, Vol 12, Iss 6, p 1272 (2022) |
Druh dokumentu: |
article |
ISSN: |
2073-4395 |
DOI: |
10.3390/agronomy12061272 |
Popis: |
Ascorbic acid (AsA) or Vitamin C is an antioxidant molecule and plays an important role in many biological processes in plants. GDP-D-mannose pyrophosphorylase (GMP or VTC1) catalyzes the synthesis of GDP-D-mannose, which is a precursor for AsA production and is used for cell wall polysaccharide and glycoprotein synthesis. In rice, the OsVTC1 gene consists of three homologs, including OsVTC1-1, OsVTC1-3 and OsVTC1-8. In this study, we characterized wild type (WT) and OsVTC1-1 RNAi lines (RI1-2 and RI1-3) and showed that the transcript levels of most genes in the AsA synthesis pathway, AsA content and leaf anatomical parameters in RNAi lines were reduced, revealing that OsVTC1-1 is involved in AsA synthesis. To further study the role of OsVTC1-1 gene, cell wall monosaccharide composition, transcriptome and proteome were compared, with specific attention paid to their wild type and OsVTC1-1 RNAi lines. Mannose and galactose composition (mole%) were decreased in OsVTC1-1 RNAi lines. Additionally, reduction of cell wall-associated proteins, such as kinesin, expansin, beta-galactosidase and cellulose synthase were observed in OsVTC1-1 RNAi lines. Our results suggest that OsVTC1-1 gene plays an important role in AsA synthesis and in cell wall-related processes. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|