Autor: |
Xiaoteng Li, Siyi Luo, Zongliang Zuo, Weiwei Zhang, Dongdong Ren |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Energies, Vol 16, Iss 4, p 2049 (2023) |
Druh dokumentu: |
article |
ISSN: |
1996-1073 |
DOI: |
10.3390/en16042049 |
Popis: |
TG-FTIR and PY-GC/MS were used to analyze the pyrolysis behaviors of pine wood, urea-formaldehyde resin (UF resin) and their blended pellets. The pyrolysis process was divided into three stages: water evaporation, devolatilization and pyrolysis residue decomposition. During the pyrolysis process of the blended pellets, with the increase of the addition ratio of UF resin, the peak value of the weight loss decreased in the decomposition stage of the pyrolysis residue, while the temperature shifted to the low-temperature region. This was mainly due to the structural stability of pyrolytic carbon produced by UF resin, which hindered the thermal decomposition of lignin-produced residues in pine. FTIR showed that CO2 was the main product of pyrolysis. For UF resin, nitrogen compounds accounted for a large proportion. With the addition of UF resin, the nitrogen in the blended pellets increased significantly. Since the synergistic effect promoted the further decomposition of the organic oxygen-containing structure, the NO release was still increased. PY-GC/MS showed that co-pyrolysis produced more nitrogen-containing compounds and promoted the decomposition of macromolecular phenol derivatives, lipids and ketones, resulting in more small-molecule acids and alcohols. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|