Military Decision-Making Process Enhanced by Image Detection

Autor: Nikola Žigulić, Matko Glučina, Ivan Lorencin, Dario Matika
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Information, Vol 15, Iss 1, p 11 (2023)
Druh dokumentu: article
ISSN: 2078-2489
DOI: 10.3390/info15010011
Popis: This study delves into the vital missions of the armed forces, encompassing the defense of territorial integrity, sovereignty, and support for civil institutions. Commanders grapple with crucial decisions, where accountability underscores the imperative for reliable field intelligence. Harnessing artificial intelligence, specifically, the YOLO version five detection algorithm, ensures a paradigm of efficiency and precision. The presentation of trained models, accompanied by pertinent hyperparameters and dataset specifics derived from public military insignia videos and photos, reveals a nuanced evaluation. Results scrutinized through precision, recall, map@0.5, mAP@0.95, and F1 score metrics, illuminate the supremacy of the model employing Stochastic Gradient Descent at 640 × 640 resolution: 0.966, 0.957, 0.979, 0.830, and 0.961. Conversely, the suboptimal performance of the model using the Adam optimizer registers metrics of 0.818, 0.762, 0.785, 0.430, and 0.789. These outcomes underscore the model’s potential for military object detection across diverse terrains, with future prospects considering the implementation on unmanned arial vehicles to amplify and deploy the model effectively.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje