Autor: |
T. C. Tsai, H. K. Jhuang, Y. Y. Ho, L. C. Lee, W. C. Su, S. L. Hung, K. H. Lee, C. C. Fu, H. C. Lin, C. L. Kuo |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Earth and Space Science, Vol 9, Iss 9, Pp n/a-n/a (2022) |
Druh dokumentu: |
article |
ISSN: |
2333-5084 |
DOI: |
10.1029/2022EA002289 |
Popis: |
Abstract A short‐term (30 days before an earthquake) prediction of an earthquake is a big challenge in seismology. As a first step, we apply deep learning to the ionospheric total electron content (TEC) data between 2003 and 2014 to detect the seismo‐ionospheric precursors of M ≥ 6.0 earthquakes in Taiwan. The bidirectional Long Short‐Term Memory (Bi‐LSTM) network is employed to use observed input data (features) to obtain the sequential TEC variations. The five input features are sequential vectors of TEC, the geomagnetic index Dst, the solar activity index F10.7, sunspot number (SSN), and solar emission index Lyman‐α. The daily values of F10.7, SSN, and Lyman‐α are converted into hourly values, depending on the solar elevation angle. The calculated hourly TEC variations can be more precisely predicted with this data conversion. We calculate the normalized difference of errors between two 15‐day adjacent stages as the “relative error”. Three trained models with the best discrimination between the relative errors of earthquake and no‐earthquake cases are chosen as classifiers. These three classifiers are then used to have a majority vote to declare whether the 30‐day period is related to the preparation of an earthquake or not. The results show that all 22 positive cases (earthquakes) are successfully predicted, giving a true positive rate of 100%. Among the 19 negative cases (normal cases), 10 of them are true negative.” Overall, a high accuracy of 78.05% is obtained. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|