Bayesian Network as a Decision Tool for Predicting ALS Disease

Autor: Hasan Aykut Karaboga, Aslihan Gunel, Senay Vural Korkut, Ibrahim Demir, Resit Celik
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Brain Sciences, Vol 11, Iss 2, p 150 (2021)
Druh dokumentu: article
ISSN: 2076-3425
DOI: 10.3390/brainsci11020150
Popis: Clinical diagnosis of amyotrophic lateral sclerosis (ALS) is difficult in the early period. But blood tests are less time consuming and low cost methods compared to other methods for the diagnosis. The ALS researchers have been used machine learning methods to predict the genetic architecture of disease. In this study we take advantages of Bayesian networks and machine learning methods to predict the ALS patients with blood plasma protein level and independent personal features. According to the comparison results, Bayesian Networks produced best results with accuracy (0.887), area under the curve (AUC) (0.970) and other comparison metrics. We confirmed that sex and age are effective variables on the ALS. In addition, we found that the probability of onset involvement in the ALS patients is very high. Also, a person’s other chronic or neurological diseases are associated with the ALS disease. Finally, we confirmed that the Parkin level may also have an effect on the ALS disease. While this protein is at very low levels in Parkinson’s patients, it is higher in the ALS patients than all control groups.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje