Autor: |
Andrey Shevtsov, Haixiang Han, Anatolii Morozov, Jesse C. Carozza, Aleksandra A. Savina, Iaroslava Shakhova, Nellie R. Khasanova, Evgeny V. Antipov, Evgeny V. Dikarev, Artem M. Abakumov |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Nanomaterials, Vol 10, Iss 9, p 1870 (2020) |
Druh dokumentu: |
article |
ISSN: |
2079-4991 |
DOI: |
10.3390/nano10091870 |
Popis: |
The Li1.17Ni0.17Mn0.50Co0.17O2 Li-rich NMC positive electrode (cathode) for lithium-ion batteries has been coated with nanocrystals of the LiMn1.5Co0.5O4 high-voltage spinel cathode material. The coating was applied through a single-source precursor approach by a deposition of the molecular precursor LiMn1.5Co0.5(thd)5 (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) dissolved in diethyl ether, followed by thermal decomposition at 400 °C inair resulting in a chemically homogeneous cubic spinel. The structure and chemical composition of the coatings, deposited on the model SiO2 spheres and Li-rich NMC crystallites, were analyzed using powder X-ray diffraction, electron diffraction, high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and energy-dispersive X-ray (EDX) mapping. The coated material containing 12 wt.% of spinel demonstrates a significantly improved first cycle Coulombic efficiency of 92% with a high first cycle discharge capacity of 290 mAhg−1. The coating also improves the capacity and voltage retention monitored over 25 galvanostatic charge–discharge cycles, although a complete suppression of the capacity and voltage fade is not achieved. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|