Approaching fashion design trend applications using text mining and semantic network analysis

Autor: Hyosun An, Minjung Park
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Fashion and Textiles, Vol 7, Iss 1, Pp 1-15 (2020)
Druh dokumentu: article
ISSN: 2198-0802
DOI: 10.1186/s40691-020-00221-w
Popis: Abstract This study aims to identify fashion trends with design features and provide a consumer-driven fashion design application in digital dynamics, by using text mining and semantic network analysis. We examined the current role and approach of fashion forecasting and developed a trend analysis process using consumer text data. This study focuses on analyzing blog posts regarding fashion collections. Specifically, we chose the jacket as our fashion item to produce practical results for our trend report, as it is an item used in multiple seasons and can be representative of fashion as a whole. We collected 29,436 blog posts from the past decade that included the keywords “jacket” and “fashion collection.” After the data collection, we established a list of fashion trend words for each design feature by classifying styles (e.g., retro), colors (e.g., black), fabrics (e.g., leather), and patterns (e.g., checkered). A time-series cluster analysis was used to categorize fashion trends into four clusters—increasing, decreasing, evergreen, and seasonal trends—and a semantic network analysis visualized the latest season’s dominant trends along with their corresponding design features. We concluded that these results are useful as they can reduce the time-consuming process of fashion trend analysis and offer consumer-driven fashion design guidelines.
Databáze: Directory of Open Access Journals