An analogue in certain unique factorization domains of the Euclid-Euler theorem on perfect numbers
Autor: | Wayne L. McDaniel |
---|---|
Jazyk: | angličtina |
Rok vydání: | 1990 |
Předmět: | |
Zdroj: | International Journal of Mathematics and Mathematical Sciences, Vol 13, Iss 1, Pp 13-24 (1990) |
Druh dokumentu: | article |
ISSN: | 0161-1712 1687-0425 01611712 |
DOI: | 10.1155/S0161171290000023 |
Popis: | We show that there exists a natural extention of the sum of divisors function to all unique factorization domains F having a finite number of units such that if a perfect number in F is defined to be an integer η whose proper divisors sum to η, then the analogue of Euclid's theorem giving the sufficient condition that an integer be an even perfect number holds in F, and an analogue of the Euclid-Euler theorem giving the necessary and sufficient condition that an even integer be perfect holds in those domains having more than two units, i. e., in Q(−1) and Q(−3). |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |