$q$-analogue of a class of harmonic functions
Autor: | Omendra Mishra, Saurabh Porwal |
---|---|
Jazyk: | English<br />Portuguese |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Boletim da Sociedade Paranaense de Matemática, Vol 41 (2022) |
Druh dokumentu: | article |
ISSN: | 0037-8712 2175-1188 |
DOI: | 10.5269/bspm.52954 |
Popis: | The purpose of the present paper is to introduce a new subclass of harmonic univalent functions associated with a $q$-Ruscheweyh derivative operator. A necessary and sufficient convolution condition for the functions to be in this class is obtained. Using this necessary and sufficient coefficient condition, results based on the extreme points, convexity and compactness for this class are also obtained. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |