Qudit machine learning

Autor: Sebastián Roca-Jerat, Juan Román-Roche, David Zueco
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Machine Learning: Science and Technology, Vol 5, Iss 1, p 015057 (2024)
Druh dokumentu: article
ISSN: 2632-2153
DOI: 10.1088/2632-2153/ad360d
Popis: We present a comprehensive investigation into the learning capabilities of a simple d -level system (qudit). Our study is specialized for classification tasks using real-world databases, specifically the Iris, breast cancer, and MNIST datasets. We explore various learning models in the metric learning framework, along with different encoding strategies. In particular, we employ data re-uploading techniques and maximally orthogonal states to accommodate input data within low-dimensional systems. Our findings reveal optimal strategies, indicating that when the dimension of input feature data and the number of classes are not significantly larger than the qudit’s dimension, our results show favorable comparisons against the best classical models. This trend holds true even for small quantum systems, with dimensions d
Databáze: Directory of Open Access Journals