Autor: |
Dao Duy Nam, Cao Thi Hong Hanh, Nghiem Minh Huyen, Dieu-Anh Van, Ha Vinh Hung, Vu Minh Trang, Vu Quang Minh, Nguyen Bich Ngoc, Vu Thi Thu Ha, Huynh Trung Hai |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Journal of Chemistry, Vol 2024 (2024) |
Druh dokumentu: |
article |
ISSN: |
2090-9071 |
DOI: |
10.1155/2024/5516249 |
Popis: |
Perfluorooctanesulfonic (PFOS) acid is a persistent anthropogenic organic fluorinated compound ubiquitous in industrial applications and is resistant to conventional wastewater treatment methods. Human exposure to PFOS can cause adverse health effects. In this study, a low-content titanium dioxide (TiO2) photocatalyst coated on glass beads was synthesized through a simple method and showed improved activity and durability. This material exhibited easy recovery and potential for large-scale applications. The efficacy of the TiO2 nanoparticle-deposited glass beads’ (TiO2@GBs) photocatalyst in treating PFOS contaminants in wastewater was explored, demonstrating its ability to promote photocatalytic reactions to break down PFOS into shorter chain byproducts. The study employed the response surface method (RSM) using the Box–Behnken design (BBD) to optimize treatment conditions at a PFOS concentration of 0.1 mg/L. Investigated factors included pH (4–9), TiO2 dosage (0.11–0.53 g/L), and irradiation time (4–8 h). Design-Expert 12 software was used to plan and optimize the experiments. Fifteen experiments were conducted, and triplicate runs occurred at the center points of the experimental plan. ANOVA and Fisher’s test yielded an F value of 73.88 (p |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|