A Regional Model for Predicting Tropospheric Delay and Weighted Mean Temperature in China Based on GRAPES_MESO Forecasting Products
Autor: | Liying Cao, Bao Zhang, Junyu Li, Yibin Yao, Lilong Liu, Qishun Ran, Zhaohui Xiong |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Remote Sensing, Vol 13, Iss 13, p 2644 (2021) |
Druh dokumentu: | article |
ISSN: | 13132644 2072-4292 |
DOI: | 10.3390/rs13132644 |
Popis: | Accurate tropospheric delay (TD) and weighted mean temperature (Tm) are important for Global Navigation Satellite System (GNSS) positioning and GNSS meteorology. For this purpose, plenty of empirical models have been built to provide estimates of TD and Tm. However, these models cannot resolve TD and Tm variations at synoptic timescales since they only model the average annual, semi-annual, and/or daily variations. As a result, the existed empirical models cannot perform well under extreme weather conditions. To address this limitation, we propose to estimate Zenith Hydrostatic Delay (ZHD), Zenith Wet Delay (ZWD), and Tm directly from the stratified numerical weather forecasting products of the mesoscale version of the Global/Regional Assimilation and PrEdiction System (GRAPES_MESO) of China. The GRAPES_MESO forecasting data has a temporal resolution of 3 h, which provides the opportunity to resolve the synoptic variation. However, it is found that the estimated ZWD and Tm exhibit apparent systematic deviation from in situ observation-based estimates, which is due to the inherent biases in the GRAPES_MESO data. To solve this problem, we propose to correct these biases using a linear model and a spherical cap harmonic model. The estimates after correction are termed as the “CTropGrid” products. When validated by the radiosonde data, the CTropGrid product has biases of 1.5 mm, −0.7 mm, and −0.1 K, and Root Mean Square (RMS) error of 8.9 mm, 20.2 mm, and 1.5 K for ZHD, ZWD, and Tm. Compared to the widely used GPT2w model, the CTropGrid products have improved the accuracies of ZHD, ZWD, and Tm by 11.9%, 55.6%, and 60.5% in terms of RMS. When validating the Zenith Tropospheric Delay (ZTD) products (the sum of ZHD and ZWD) using the IGS ZTD data, the CTropGrid ZTD has a bias of −0.7 mm and an RMS of 35.8 mm, which is 22.7% better than the GPT2w model in terms of RMS. Besides the accuracy improvements, the CTropGrid products well model the synoptic-scale variations of ZHD, ZWD, and Tm. Compared to the existing empirical models that only capture the tidal (seasonal and/or diurnal) variations, the CTropGrid products capture well the non-tidal variations of ZHD, ZWD, and Tm, which enhances the tropospheric delay corrections and GNSS water vapor monitoring at synoptic timescales. Therefore, the CTropGrid product is an important progress in GNSS positioning and GNSS meteorology. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |