Autor: |
Adam Łysiak, Tomasz Marciniak, Dawid Bączkowicz |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Sensors, Vol 22, Iss 23, p 9542 (2022) |
Druh dokumentu: |
article |
ISSN: |
1424-8220 |
DOI: |
10.3390/s22239542 |
Popis: |
Current research concerning the repeatability of the joint’s sounds examination in the temporomandibular joints (TMJ) is inconclusive; thus, the aim of this study was to investigate the repeatability of the specific features of the vibroarthrogram (VAG) in the TMJ using accelerometers. The joint sounds of both TMJs were measured with VAG accelerometers in two groups, study and control, each consisting of 47 participants (n = 94). Two VAG recording sessions consisted of 10 jaw open/close cycles guided by a metronome. The intraclass correlation coefficient (ICC) was calculated for seven VAG signal features. Additionally, a k-nearest-neighbors (KNN) classifier was defined and compared with a state-of-the-art method (joint vibration analysis (JVA) decision tree). ICC indicated excellent (for the integral below 300 Hz feature), good (total integral, integral above 300 Hz, and median frequency features), moderate (integral below to integral above 300 Hz ratio feature) and poor (peak amplitude feature) reliability. The accuracy scores for the KNN classifier (up to 0.81) were higher than those for the JVA decision tree (up to 0.60). The results of this study could open up a new field of research focused on the features of the vibroarthrogram in the context of the TMJ, further improving the diagnosing process. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|