Vertical transmission of the gut microbiota influences glucose metabolism in offspring of mice with hyperglycaemia in pregnancy

Autor: Cunxi Xue, Qinyuan Xie, Chenhong Zhang, Yimeng Hu, Xiaoting Song, Yifan Jia, Xiaoyang Shi, Yiqi Chen, Yalei Liu, Lingyun Zhao, Fenglian Huang, Huijuan Yuan
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Microbiome, Vol 10, Iss 1, Pp 1-19 (2022)
Druh dokumentu: article
ISSN: 2049-2618
DOI: 10.1186/s40168-022-01318-8
Popis: Abstract Background Hyperglycaemia in pregnancy (HIP) is a common metabolic disorder that not only poses risks to maternal health but also associates with an increased risk of diabetes among offspring. Vertical transmission of microbiota may influence the offspring microbiome and subsequent glucose metabolism. However, the mechanism by which maternal gut microbiota may influence glucose metabolism of the offspring remains unclear and whether intervening microbiota vertical transmission could be used as a strategy to prevent diabetes in the offspring of mothers with HIP has not been investigated. So we blocked vertical transmission to investigate its effect on glucose metabolism in the offspring. Results We established a murine HIP model with a high-fat diet (HFD) and investigated the importance of vertical transmission of gut microbiota on the glucose metabolism of offspring via birth and nursing by blocking these events through caesarean section (C-section) and cross-fostering. After weaning, all offspring were fed a normal diet. Based on multi-omics analysis, biochemical and transcriptional assays, we found that the glucometabolic deficits in the mothers were subsequently ‘transmitted’ to the offspring. Meanwhile, the partial change in mothers’ gut microbial community induced by HIP could be transmitted to offspring, supported by the closed clustering of the microbial structure and composition between the offspring and their mothers. Further study showed that the microbiota vertical transmission was blocked by C-section and cross-fostering, which resulted in improved insulin sensitivity and islet function of the offspring of the mothers with HIP. These effects were correlated with changes in the relative abundances of specific bacteria and their metabolites, such as increased relative abundances of Bifidobacterium and short-chain fatty acids. In particular, gut microbial communities of offspring were closely related to those of their foster mothers but not their biological mothers, and the effect of cross-fostering on the offspring’s gut microbiota was more profound than that of C-section. Conclusion Our study demonstrates that the gut microbiota transmitted via birth and nursing are important contributors to the glucose metabolism phenotype in offspring. Video Abstract
Databáze: Directory of Open Access Journals