Autor: |
Wenhao Zhu, Xiaoyu Zhang, Qiuhong Zhai, Chenyun Liu |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Future Internet, Vol 15, Iss 5, p 180 (2023) |
Druh dokumentu: |
article |
ISSN: |
1999-5903 |
DOI: |
10.3390/fi15050180 |
Popis: |
In the two-stage open-domain question answering (OpenQA) systems, the retriever identifies a subset of relevant passages, which the reader then uses to extract or generate answers. However, the performance of OpenQA systems is often hindered by issues such as short and semantically ambiguous queries, making it challenging for the retriever to find relevant passages quickly. This paper introduces Hybrid Text Generation-Based Query Expansion (HTGQE), an effective method to improve retrieval efficiency. HTGQE combines large language models with Pseudo-Relevance Feedback techniques to enhance the input for generative models, improving text generation speed and quality. Building on this foundation, HTGQE employs multiple query expansion generators, each trained to provide query expansion contexts from distinct perspectives. This enables the retriever to explore relevant passages from various angles for complementary retrieval results. As a result, under an extractive and generative QA setup, HTGQE achieves promising results on both Natural Questions (NQ) and TriviaQA (Trivia) datasets for passage retrieval and reading tasks. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|