Methodological Approach for Identifying Websites with Infringing Content via Text Transformers and Dense Neural Networks

Autor: Aldo Hernandez-Suarez, Gabriel Sanchez-Perez, Linda Karina Toscano-Medina, Hector Manuel Perez-Meana, Jose Portillo-Portillo, Jesus Olivares-Mercado
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Future Internet, Vol 15, Iss 12, p 397 (2023)
Druh dokumentu: article
ISSN: 1999-5903
DOI: 10.3390/fi15120397
Popis: The rapid evolution of the Internet of Everything (IoE) has significantly enhanced global connectivity and multimedia content sharing, simultaneously escalating the unauthorized distribution of multimedia content, posing risks to intellectual property rights. In 2022 alone, about 130 billion accesses to potentially non-compliant websites were recorded, underscoring the challenges for industries reliant on copyright-protected assets. Amidst prevailing uncertainties and the need for technical and AI-integrated solutions, this study introduces two pivotal contributions. First, it establishes a novel taxonomy aimed at safeguarding and identifying IoE-based content infringements. Second, it proposes an innovative architecture combining IoE components with automated sensors to compile a dataset reflective of potential copyright breaches. This dataset is analyzed using a Bidirectional Encoder Representations from Transformers-based advanced Natural Language Processing (NLP) algorithm, further fine-tuned by a dense neural network (DNN), achieving a remarkable 98.71% accuracy in pinpointing websites that violate copyright.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje