Application of machine learning in the analysis of seismic data to identify tectonic faults in various seismogeological conditions

Autor: Nikolaenko, Sergey Viktorovich, Kovalenko, Andrey A., Nateganov, Andrey E., Kruk, Pavel N. K, Deryushev, Aleksandr B.
Jazyk: English<br />Russian
Rok vydání: 2024
Předmět:
Zdroj: Известия Саратовского университета. Новая серия: Серия Науки о Земле, Vol 24, Iss 1, Pp 49-55 (2024)
Druh dokumentu: article
ISSN: 1819-7663
2542-1921
DOI: 10.18500/1819-7663-2024-24-1-49-55
Popis: The article presents the results of a comparative analysis of algorithms for automatic interpretation of tectonic faults based on seismic data recorded in various seismogeological conditions. For each type of geological section (platform, salt tectonics, marine data), a cube of the probability of violations by an analytical algorithm and using trained neural networks was calculated.
Databáze: Directory of Open Access Journals