Gravity sedimentation reveals functionally and morphologically different platelets in human blood

Autor: Erzsébet Ezer, Diana Schrick, Margit Tőkés-Füzesi, István Papp, Barbara Réger, Abigél Molnár, Hajnalka Ábrahám, Akos Koller, Jolán Hársfalvi, Miklós Kellermayer, Tihamér Molnár
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Platelets, Vol 35, Iss 1 (2024)
Druh dokumentu: article
ISSN: 09537104
1369-1635
0953-7104
DOI: 10.1080/09537104.2023.2298341
Popis: In contrast to red blood cells, platelets float rather than sediment when a column of blood is placed in the gravitational field. By the analogy of erythrocyte sedimentation (ESR), it can be expressed with the platelet antisedimentation rate (PAR), which quantitates the difference in platelet count between the upper and lower halves of the blood column after 1 h of 1 g sedimentation. Venous blood samples from 21 healthy subjects were analyzed for PAR. After a 1-h sedimentation, the upper and lower fractions of blood samples were analyzed for platelet count, mean platelet volume (MPV), immature platelet fraction (IPF), and high-fluorescence IPF (H-IPF). The mechanisms behind platelet flotation were explored by further partitioning of the blood column, time-dependent measurements of platelet count and comparison with ESR. The structure and function of the platelets were assessed by electron microscopy (EM) and atomic force microscopy (AFM), and platelet aggregometry, respectively. Platelet antisedimentation is driven by density differences and facilitated by a size-exclusion mechanism caused by progressive erythrocyte sedimentation. The area under the curve (AUC) of the whole blood adenosine diphosphate (ADP) aggregation curves showed significant differences between the upper and lower samples (p
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje