Normalized Sombor Indices as Complexity Measures of Random Networks

Autor: R. Aguilar-Sánchez, J. A. Méndez-Bermúdez, José M. Rodríguez, José M. Sigarreta
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Entropy, Vol 23, Iss 8, p 976 (2021)
Druh dokumentu: article
ISSN: 1099-4300
DOI: 10.3390/e23080976
Popis: We perform a detailed computational study of the recently introduced Sombor indices on random networks. Specifically, we apply Sombor indices on three models of random networks: Erdös-Rényi networks, random geometric graphs, and bipartite random networks. Within a statistical random matrix theory approach, we show that the average values of Sombor indices, normalized to the order of the network, scale with the average degree. Moreover, we discuss the application of average Sombor indices as complexity measures of random networks and, as a consequence, we show that selected normalized Sombor indices are highly correlated with the Shannon entropy of the eigenvectors of the adjacency matrix.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje