Evolution of Spin Period and Magnetic Field of the Crab Pulsar: Decay of the Braking Index by the Particle Wind Flow Torque

Autor: Cheng-Min Zhang, Xiang-Han Cui, Di Li, De-Hua Wang, Shuang-Qiang Wang, Na Wang, Jian-Wei Zhang, Bo Peng, Wei-Wei Zhu, Yi-Yan Yang, Yuan-Yue Pan
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Universe, Vol 8, Iss 12, p 628 (2022)
Druh dokumentu: article
ISSN: 2218-1997
DOI: 10.3390/universe8120628
Popis: The evolutions of a neutron star’s rotation and magnetic field (B-field) have remained unsolved puzzles for over half a century. We ascribe the rotational braking torques of pulsar to both components, the standard magnetic dipole radiation (MDR) and particle wind flow (MDR + Wind, hereafter named MDRW), which we apply to the Crab pulsar (B0531 + 21), the only source with a known age and long-term continuous monitoring by radio telescope. Based on the above presumed simple spin-down torques, we obtain the exact analytic solution on the rotation evolution of the Crab pulsar, together with the related outcomes as described below: (1) unlike the constant characteristic B-field suggested by the MDR model, this value for the Crab pulsar increases by a hundred times in 50 kyr while its real B-field has no change; (2) the rotational braking index evolves from ∼3 to 1 in the long-term, however, it drops from 2.51 to 2.50 in ∼45 years at the present stage, while the particle flow contributes approximately 25% of the total rotational energy loss rate; (3) strikingly, the characteristic age has the maximum limit of ∼10 kyr, meaning that it is not always a good indicator of a real age. Furthermore, we discussed the evolutionary path of the Crab pulsar from the MDR to the wind domination by comparing with the possible wind braking candidate pulsar PSR J1734-3333.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje