Toxoplasma gondii infection and brain inflammation: A two-sample mendelian randomization analysis

Autor: Yong Yao, Taiyu Shi, Panyin Shu, Yixin Zhang, Hao Gu
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Heliyon, Vol 10, Iss 1, Pp e24228- (2024)
Druh dokumentu: article
ISSN: 2405-8440
DOI: 10.1016/j.heliyon.2024.e24228
Popis: Background: Toxoplasma gondii is an opportunistic parasitic protozoan that can cause highly fatal toxoplasmic encephalitis when the host immune system is compromised. However, the transition from chronic to acute infection remains poorly understood. In this study, we conducted a 180-day observation of tissue damage and inflammation in the brains of mice infected with T. gondii. Subsequently, we investigated the inflammatory factors that T. gondii infection may alter using two-sample Mendelian randomization (MR) analysis. Methods: We first established a mouse model of T. gondii infection. Subsequently, the mice were euthanized, the brain tissue collected, and immunohistochemistry and hematoxylin and eosin staining performed to observe tissue damage and inflammatory conditions at various time points. Our study also included a published large-scale genome-wide association study meta-analysis that encompassed the circulating concentrations of 41 cytokines. This dataset included 8293 individuals from three independent population cohorts in Finland. Genetic association data for T. gondii were sourced from the Integrative Epidemiology Unit and European Bioinformatics Institute datasets, which included 5010 and 559 individuals of European ancestry, respectively. To assess the causal relationship between T. gondii infection and inflammatory biomarkers, we applied a two-sample MR. Results: Inflammation and damage resulting from T. gondii infection varied among the distinct regions of the mouse brain. Based on the MR analysis results, three inflammatory biomarkers were chemically assigned to Chemokines and Others, including IP10 (interferon gamma inducible protein-10), MCP1 (monocyte chemoattractant protein-1), and TRAIL (TNF-related apoptosis-inducing ligand). Conclusion: Our study commenced with the assessment of tissue damage and progression of inflammation in distinct regions of the mouse brain after T. gondii infection. Subsequently, using MR analysis, we detected potential alterations in inflammatory factors associated with this infection. These findings offer valuable insights into the mechanisms underlying toxoplasmic encephalitis and suggest directions for the prevention and treatment of T. gondii infections.
Databáze: Directory of Open Access Journals