Asymptotic dichotomy in a class of higher order nonlinear delay differential equations

Autor: Yunhua Ye, Haihua Liang
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Journal of Inequalities and Applications, Vol 2019, Iss 1, Pp 1-17 (2019)
Druh dokumentu: article
ISSN: 1029-242X
DOI: 10.1186/s13660-018-1949-7
Popis: Abstract Employing a generalized Riccati transformation and integral averaging technique, we show that all solutions of the higher order nonlinear delay differential equation y(n+2)(t)+p(t)y(n)(t)+q(t)f(y(g(t)))=0 $$ y^{(n+2)}(t)+p(t)y^{(n)}(t)+q(t)f\bigl(y\bigl(g(t)\bigr)\bigr)=0 $$ will converge to zero or oscillate, under some conditions listed in the theorems of the present paper. Several examples are also given to illustrate the applications of these results.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje