Autor: |
You Meng, Xiaocui Li, Xiaolin Kang, Wanpeng Li, Wei Wang, Zhengxun Lai, Weijun Wang, Quan Quan, Xiuming Bu, SenPo Yip, Pengshan Xie, Dong Chen, Dengji Li, Fei Wang, Chi-Fung Yeung, Changyong Lan, Chuntai Liu, Lifan Shen, Yang Lu, Furong Chen, Chun-Yuen Wong, Johnny C. Ho |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Nature Communications, Vol 14, Iss 1, Pp 1-14 (2023) |
Druh dokumentu: |
article |
ISSN: |
2041-1723 |
DOI: |
10.1038/s41467-023-38090-8 |
Popis: |
Abstract Chemical bonds, including covalent and ionic bonds, endow semiconductors with stable electronic configurations but also impose constraints on their synthesis and lattice-mismatched heteroepitaxy. Here, the unique multi-scale van der Waals (vdWs) interactions are explored in one-dimensional tellurium (Te) systems to overcome these restrictions, enabled by the vdWs bonds between Te atomic chains and the spontaneous misfit relaxation at quasi-vdWs interfaces. Wafer-scale Te vdWs nanomeshes composed of self-welding Te nanowires are laterally vapor grown on arbitrary surfaces at a low temperature of 100 °C, bringing greater integration freedoms for enhanced device functionality and broad applicability. The prepared Te vdWs nanomeshes can be patterned at the microscale and exhibit high field-effect hole mobility of 145 cm2/Vs, ultrafast photoresponse below 3 μs in paper-based infrared photodetectors, as well as controllable electronic structure in mixed-dimensional heterojunctions. All these device metrics of Te vdWs nanomesh electronics are promising to meet emerging technological demands. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|