Popis: |
Streptococcus pneumoniae is an important human pathogen causing both mild and severe diseases. In this work, we determined the complete genome sequence of the S. pneumoniae clinical isolate BM6001, which is the original host of the ICE Tn5253. The BM6001 genome is organized in one circular chromosome of 2,293,748 base pairs (bp) in length, with an average GC content of 39.54%; the genome harbors a type 19F capsule locus, two tandem copies of pspC, the comC1-comD1 alleles and the type I restriction modification system SpnIII. The BM6001 mobilome accounts for 15.54% (356,521 bp) of the whole genome and includes (i) the ICE Tn5253 composite; (ii) the novel IME Tn7089; (iii) the novel transposon Tn7090; (iv) 3 prophages and 2 satellite prophages; (v) 5 genomic islands (GIs); (vi) 72 insertion sequences (ISs); (vii) 69 RUPs; (viii) 153 BOX elements; and (ix) 31 SPRITEs. All MGEs, except for the GIs, produce excised circular forms and attB site restoration. Tn7089 is 9089 bp long and contains 11 ORFs, of which 6 were annotated and code for three functions: integration/excision, mobilization and adaptation. Tn7090 is 9053 bp in size, flanked by two copies of ISSpn7, and contains seven ORFs organized as a single transcriptional unit, with genes encoding for proteins likely involved in the uptake and binding of Mg2+ cations in the adhesion to host cells and intracellular survival. BM6001 GIs, except for GI-BM6001.4, are variants of the pneumococcal TIGR4 RD5 region of diversity, pathogenicity island PPI1, R6 Cluster 4 and PTS island. Overall, prophages and satellite prophages contain genes predicted to encode proteins involved in DNA replication and lysogeny, in addition to genes encoding phage structural proteins and lytic enzymes carried only by prophages. ΦBM6001.3 has a mosaic structure that shares sequences with prophages IPP69 and MM1 and disrupts the competent comGC/cglC gene after chromosomal integration. Treatment with mitomycin C results in a 10-fold increase in the frequency of ΦBM6001.3 excised forms and comGC/cglC coding sequence restoration but does not restore competence for genetic transformation. In addition, phylogenetic analysis showed that BM6001 clusters in a small lineage with five other historical strains, but it is distantly related to the lineage due to its unique mobilome, suggesting that BM6001 has progressively accumulated many MGEs while losing competence for genetic transformation. |