Autor: |
Andrew J., Jennifer Eunice, Daniela Elena Popescu, M. Kalpana Chowdary, Jude Hemanth |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Agronomy, Vol 12, Iss 10, p 2395 (2022) |
Druh dokumentu: |
article |
ISSN: |
2073-4395 |
DOI: |
10.3390/agronomy12102395 |
Popis: |
The agricultural sector plays a key role in supplying quality food and makes the greatest contribution to growing economies and populations. Plant disease may cause significant losses in food production and eradicate diversity in species. Early diagnosis of plant diseases using accurate or automatic detection techniques can enhance the quality of food production and minimize economic losses. In recent years, deep learning has brought tremendous improvements in the recognition accuracy of image classification and object detection systems. Hence, in this paper, we utilized convolutional neural network (CNN)-based pre-trained models for efficient plant disease identification. We focused on fine tuning the hyperparameters of popular pre-trained models, such as DenseNet-121, ResNet-50, VGG-16, and Inception V4. The experiments were carried out using the popular PlantVillage dataset, which has 54,305 image samples of different plant disease species in 38 classes. The performance of the model was evaluated through classification accuracy, sensitivity, specificity, and F1 score. A comparative analysis was also performed with similar state-of-the-art studies. The experiments proved that DenseNet-121 achieved 99.81% higher classification accuracy, which was superior to state-of-the-art models. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|