On the structure of completely useful topologies
Autor: | Gianni Bosi, Gerhard Herden |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2002 |
Předmět: | |
Zdroj: | Applied General Topology, Vol 3, Iss 2, Pp 145-167 (2002) |
Druh dokumentu: | article |
ISSN: | 1576-9402 1989-4147 |
DOI: | 10.4995/agt.2002.2060 |
Popis: | Let X be an arbitrary set. Then a topology t on X is completely useful if every upper semicontinuous linear preorder on X can be represented by an upper semicontinuous order preserving real-valued function. In this paper we characterize in ZFC (Zermelo-Fraenkel + Axiom of Choice) and ZFC+SH (ZFC + Souslin Hypothesis) completely useful topologies on X. This means, in the terminology of mathematical utility theory, that we clarify the topological structure of any type of semicontinuous utility representation problem. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |