On the structure of completely useful topologies

Autor: Gianni Bosi, Gerhard Herden
Jazyk: angličtina
Rok vydání: 2002
Předmět:
Zdroj: Applied General Topology, Vol 3, Iss 2, Pp 145-167 (2002)
Druh dokumentu: article
ISSN: 1576-9402
1989-4147
DOI: 10.4995/agt.2002.2060
Popis: Let X be an arbitrary set. Then a topology t on X is completely useful if every upper semicontinuous linear preorder on X can be represented by an upper semicontinuous order preserving real-valued function. In this paper we characterize in ZFC (Zermelo-Fraenkel + Axiom of Choice) and ZFC+SH (ZFC + Souslin Hypothesis) completely useful topologies on X. This means, in the terminology of mathematical utility theory, that we clarify the topological structure of any type of semicontinuous utility representation problem.
Databáze: Directory of Open Access Journals