Seizure Sources Can Be Imaged from Scalp EEG by Means of Biophysically Constrained Deep Neural Networks

Autor: Rui Sun, Abbas Sohrabpour, Boney Joseph, Gregory Worrell, Bin He
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Advanced Science, Vol 11, Iss 47, Pp n/a-n/a (2024)
Druh dokumentu: article
ISSN: 2198-3844
DOI: 10.1002/advs.202405246
Popis: Abstract Seizure localization is important for managing drug‐resistant focal epilepsy. Here, the capability of a novel deep learning‐based source imaging framework (DeepSIF) for imaging seizure activities from electroencephalogram (EEG) recordings in drug‐resistant focal epilepsy patients is investigated. The neural mass model of ictal oscillations is adopted to generate synthetic training data with spatio‐temporal‐spectra features similar to ictal dynamics. The trained DeepSIF model is rigorously validated using computer simulations and in a cohort of 33 drug‐resistant focal epilepsy patients with high‐density (76‐channel) EEG seizure recordings, by comparing DeepSIF estimates with surgical resection outcome and seizure onset zone (SOZ). These findings show that the trained DeepSIF model outperforms other methods in estimating the spatial and temporal information of origins of ictal activities. It achieves a high spatial specificity of 96% and a low spatial dispersion of 3.80 ± 5.74 mm when compared to the resection region. The source imaging results also demonstrate good coverage of SOZ, with an average distance of 10.89 ± 10.14 mm (from the SOZ to the reconstruction). These promising results suggest that DeepSIF has significant potential for advancing noninvasive imaging of the origins of ictal activities in patients with focal epilepsy, aiding management of intractable epilepsy.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje