Popis: |
Micellar calcium phosphate (MCP) plays an important role in maintaining the structure and stability of the casein micelle and its properties during processing. The objective of this study was to investigate how heating (10 min at 80 or 90 °C) at different pH levels (6.3, 6.6, 6.9, or 7.2) impacted the acid-induced gelation of MCP-adjusted milk, containing 67 (MCP67), 100 (MCP100), or 113 (MCP113) % of the original MCP content. The unheated sample MCP100 at pH 6.6 was considered the control. pH acidification to pH 4.5 at 30 °C was achieved with glucono delta-lactone while monitoring viscoelastic behaviour by small-amplitude oscillatory rheology. The partitioning of calcium and proteins between colloidal and soluble phases was also examined. In MCP-depleted skim milk samples, the concentrations of non-sedimentable caseins and whey proteins were higher compared to the control and MCP-enriched skim milk samples. The influence of MCP adjustment on gelation was dependent on pH. Acid gels from sample MCP67 exhibited the highest storage modulus (G′). At other pH levels, MCP100 resulted in the greatest G′. The pH of MCP-adjusted skim milk also impacted the gel properties after heating. Overall, this study highlights the substantial impact of MCP content on the acid gelation of milk, with a pronounced dependency of the MCP adjustment effect on pH variations. |