Visualization of incrementally learned projection trajectories for longitudinal data

Autor: Tamasha Malepathirana, Damith Senanayake, Vini Gautam, Martin Engel, Rachelle Balez, Michael D. Lovelace, Gayathri Sundaram, Benjamin Heng, Sharron Chow, Christopher Marquis, Gilles J. Guillemin, Bruce Brew, Chennupati Jagadish, Lezanne Ooi, Saman Halgamuge
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Scientific Reports, Vol 14, Iss 1, Pp 1-15 (2024)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-024-63511-z
Popis: Abstract Longitudinal studies that continuously generate data enable the capture of temporal variations in experimentally observed parameters, facilitating the interpretation of results in a time-aware manner. We propose IL-VIS (incrementally learned visualizer), a new machine learning pipeline that incrementally learns and visualizes a progression trajectory representing the longitudinal changes in longitudinal studies. At each sampling time point in an experiment, IL-VIS generates a snapshot of the longitudinal process on the data observed thus far, a new feature that is beyond the reach of classical static models. We first verify the utility and correctness of IL-VIS using simulated data, for which the true progression trajectories are known. We find that it accurately captures and visualizes the trends and (dis)similarities between high-dimensional progression trajectories. We then apply IL-VIS to longitudinal multi-electrode array data from brain cortical organoids when exposed to different levels of quinolinic acid, a metabolite contributing to many neuroinflammatory diseases including Alzheimer’s disease, and its blocking antibody. We uncover valuable insights into the organoids’ electrophysiological maturation and response patterns over time under these conditions.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje