Autor: |
Morteza Mohammadjavadi, Ryan T. Ash, Ningrui Li, Pooja Gaur, Jan Kubanek, Yamil Saenz, Gary H. Glover, Gerald R. Popelka, Anthoney M. Norcia, Kim Butts Pauly |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 12, Iss 1, Pp 1-14 (2022) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-022-20554-4 |
Popis: |
Abstract Neuromodulation of deep brain structures via transcranial ultrasound stimulation (TUS) is a promising, but still elusive approach to non-invasive treatment of brain disorders. The purpose of this study was to confirm that MR-guided TUS of the lateral geniculate nucleus (LGN) can modulate visual evoked potentials (VEPs) in the intact large animal; and to study the impact on cortical brain oscillations. The LGN on one side was identified with T2-weighted MRI in sheep (all male, n = 9). MR acoustic radiation force imaging (MR-ARFI) was used to confirm localization of the targeted area in the brain. Electroencephalographic (EEG) signals were recorded, and the visual evoked potential (VEP) peak-to-peak amplitude (N70 and P100) was calculated for each trial. Time–frequency spectral analysis was performed to elucidate the effect of TUS on cortical brain dynamics. The VEP peak-to-peak amplitude was reversibly suppressed relative to baseline during TUS. Dynamic spectral analysis demonstrated a change in cortical oscillations when TUS is paired with visual sensory input. Sonication-associated microscopic displacements, as measured by MR-ARFI, correlated with the TUS-mediated suppression of visual evoked activity. TUS non-invasively delivered to LGN can neuromodulate visual activity and oscillatory dynamics in large mammalian brains. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|