Tensile Properties and Fracture Analysis of Duplex (2205) and Super Duplex (2507) Stainless Steels, Produced via Laser Powder Bed Fusion Additive Manufacturing

Autor: Leonidas Karavias, Leonidas Gargalis, Joachim Seland Graff, Marius Johansen, Spyros Diplas, Evaggelia K. Karaxi
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Metals, Vol 14, Iss 7, p 838 (2024)
Druh dokumentu: article
ISSN: 2075-4701
DOI: 10.3390/met14070838
Popis: Additive manufacturing of duplex (DSS) and super duplex stainless steel (SDSS) has been successfully demonstrated using laser powder bed fusion (LPBF) in recent years. Owing to the high cooling rates, as-built LPBF-processed DSS and SDSS exhibit close to 100% ferritic microstructures and require heat treatment at 1000–1300 °C to obtain the desired duplex microstructure. In this work, the mechanical properties of DSS and SDSS processed via LPBF were investigated in three building directions (vertical, horizontal, diagonal) and three processing conditions (as-built, stress-relieved, annealed, and quenched) using uniaxial tensile testing. As-built samples exhibited tensile and yield strength greater than 1000 MPa accompanied by less than 20% elongation at break. In comparison, the water-quenched samples and samples annealed at 1100 °C exhibited elongation at break greater than 34% with yield and tensile strength values less than 950 MPa. Stress relief annealing at 300 °C had a negligible impact on the mechanical properties. Austenite formation upon high-temperature annealing restored the reduced ductility of the as-built samples. The as-built and stress-relieved SDSS showed the highest yield and tensile strength values in the horizontal build direction, reaching up to ≈1400 and ≈1500 MPa (for SDSS), respectively, as compared to the vertical and diagonal directions. Fractographic investigation after tensile testing revealed predominantly a quasi-ductile failure mechanism, showing fine size dimple formation and cleavage facets in the as-built state and a fully ductile fracture in the annealed and quenched conditions. The findings in this study demonstrate the mechanical anisotropy of DSS and SDSS along three different build orientations, 0°, 45°, 90°, and three post-processing conditions.
Databáze: Directory of Open Access Journals