Multiple nontrivial solutions of superlinear fractional Laplace equations without (AR) condition

Autor: Zhao Leiga, Cai Hongrui, Chen Yutong
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Advances in Nonlinear Analysis, Vol 12, Iss 1, Pp 349-381 (2023)
Druh dokumentu: article
ISSN: 2191-950X
DOI: 10.1515/anona-2022-0281
Popis: In this article, we study a class of nonlinear fractional Laplace problems with a parameter and superlinear nonlinearity (−Δ)su=λu+f(x,u),inΩ,u=0,inRN\Ω.\left\{\phantom{\rule[-1.25em]{}{0ex}}\begin{array}{ll}{\left(-\Delta )}^{s}u=\lambda u+f\left(x,u),\hspace{1.0em}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,\\ u=0,\hspace{1.0em}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N}\backslash \Omega \right.\end{array}\right. Multiplicity of nontrivial solutions is obtained when the parameter is near the eigenvalue of the fractional Laplace operator without Ambrosetti and Rabinowitz condition for the nonlinearity. Our methods are the combination of minimax method, bifurcation theory, and Morse theory.
Databáze: Directory of Open Access Journals