Substitution of manure for chemical fertilizer affects soil microbial community diversity, structure and function in greenhouse vegetable production systems.

Autor: Haoan Luan, Wei Gao, Shaowen Huang, Jiwei Tang, Mingyue Li, Huaizhi Zhang, Xinping Chen, Dainius Masiliūnas
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: PLoS ONE, Vol 15, Iss 2, p e0214041 (2020)
Druh dokumentu: article
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0214041
Popis: Soil microbial communities and enzyme activities together affect various ecosystem functions of soils. Fertilization, an important agricultural management practice, is known to modify soil microbial characteristics; however, inconsistent results have been reported. The aim of this research was to make a comparative study of the effects of different nitrogen (N) fertilizer rates and types (organic and inorganic) on soil physicochemical properties, enzyme activities and microbial attributes in a greenhouse vegetable production (GVP) system of Tianjin, China. Results showed that manure substitution of chemical fertilizer, especially at a higher substitution rate, improved soil physicochemical properties (higher soil organic C (SOC) and nutrient (available N and P) contents; lower bulk densities), promoted microbial growth (higher total phospholipid fatty acids and microbial biomass C contents) and activity (higher soil hydrolase activities). Manure application induced a higher fungi/bacteria ratio due to a lower response in bacterial than fungal growth. Also, manure application greatly increased bacterial stress indices, as well as microbial communities and functional diversity. The principal component analysis showed that the impact of manure on microbial communities and enzyme activities were more significant than those of chemical fertilizer. Furthermore, redundancy analysis indicated that SOC and total N strongly influenced the microbial composition, while SOC and ammonium-N strongly influenced the microbial activity. In conclusion, manure substitution of inorganic fertilizer, especially at a higher substitution rate, was more efficient for improving soil quality and biological functions.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje