Autor: |
Janos Steffen, Jennifer Ngo, Sheng-Ping Wang, Kevin Williams, Henning F. Kramer, George Ho, Carlos Rodriguez, Krishna Yekkala, Chidozie Amuzie, Russell Bialecki, Lisa Norquay, Andrea R. Nawrocki, Mark Erion, Alessandro Pocai, Orian S. Shirihai, Marc Liesa |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Molecular Metabolism, Vol 64, Iss , Pp 101566- (2022) |
Druh dokumentu: |
article |
ISSN: |
2212-8778 |
DOI: |
10.1016/j.molmet.2022.101566 |
Popis: |
Objective: The mitochondrial fission protein Drp1 was proposed to promote NAFLD, as inhibition of hepatocyte Drp1 early in life prevents liver steatosis induced by high-fat diet in mice. However, whether Drp1-knockdown in older mice can reverse established NASH is unknown. Methods: N-acetylgalactosamine-siRNA conjugates, an FDA approved method to deliver siRNA selectively to hepatocytes, were used to knockdown hepatocyte-Drp1 in mice (NAG-Drp1si). NASH was induced in C57BL/6NTac mice by Gubra-Amylin-NASH diet (D09100310, 40% fat, 22% fructose and 2% cholesterol) and treatment with NAG-Drp1si was started at week 24 of diet. Circulating transaminases, liver histology, gene expression of fibrosis and inflammation markers, and hydroxyproline synthesis determined NASH severity. Liver NEFA and triglycerides were quantified by GC/MS. Mitochondrial function was determined by respirometry. Western blots of Oma1, Opa1, p-eIf2α, as well as transcriptional analyses of Atf4-regulated genes determined ISR engagement. Results: NAG-Drp1si treatment decreased body weight and induced liver inflammation in adult healthy mice. Increased hepatic Gdf15 production was the major contributor to body-weight loss caused by NAG-Drp1si treatment, as Gdf15 receptor deletion (Gfral KO) prevented the decrease in food intake and mitigated weight loss. NAG-Drp1si activated the Atf4-controlled integrated stress response (ISR) to increase hepatic Gdf15 expression. NAG-Drp1si in healthy mice caused ER stress and activated the mitochondrial protease Oma1, which are the ER and mitochondrial triggers that activate the Atf4-controlled ISR. Remarkably, induction of NASH was not sufficient to activate Oma1 in liver. However, NAG-Drp1si treatment was sufficient to activate Oma1 in adult mice with NASH, as well as exacerbating NASH-induced ER stress. Consequently, NAG-Drp1si treatment in mice with NASH led to higher ISR activation, exacerbated inflammation, fibrosis and necrosis. Conclusion: Drp1 mitigates NASH by decreasing ER stress, preventing Oma1 activation and ISR exacerbation. The elevation in Gdf15 actions induced by NAG-Drp1si might represent an adaptive response decreasing the nutrient load to liver when mitochondria are misfunctional. Our study argues against blocking Drp1 in hepatocytes to combat NASH. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|