Improvement of Intensive In-Seam Gas Drainage Technology at Kirova Mine in Kuznetsk Coal Basin
Autor: | Sergey Slastunov, Konstantin Kolikov, Andrian Batugin, Anatoly Sadov, Adam Khautiev |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Energies, Vol 15, Iss 3, p 1047 (2022) |
Druh dokumentu: | article |
ISSN: | 15031047 1996-1073 |
DOI: | 10.3390/en15031047 |
Popis: | One of the ways to resolve the “green energy-economic development” dilemma, in which the coal industry is situated, is by the improvement of technologies and the integrated use of extracted resources, including methane gas as a clean energy source. Using the example of the Kirova mine, located in Kuznetsk coal basin—one of the ecologically unfavorable coal mining regions of Russia—this article discusses an integrated technology for the extraction of coalbed methane (ECBM), which makes it possible to reduce greenhouse gas (methane) emissions and improve the safety and intensity of coal mining. The Kirova mine, with its 3 Mt production in 2019, is one of the coal mining leaders in Russia. The available mining equipment has the potential to significantly increase the output; however, gas is a limiting factor to this. The customary approaches to coal seam degassing have already been petered out. The miners and mine science are facing a challenge to validate and test an alternative technology to ensure effective in-seam gas drainage prior to vigorous mining. This article gives an account of the improvement track record of the in-seam gas drainage technology used to pre-treat coal seams for intensive and safe extraction. This technology suggests, at the first stage, hydraulic loosening of the target coal seam through wells drilled from the surface (SSHL), then hydraulic fracturing (HF) of the coal seam through the boreholes drilled from underground development headings, followed by methane extraction from the high-permeability coal-gas reservoir created through standard in-seam gas drainage underground wells. Results are presented in this paper of field testing of the improved SSHL technique. Findings are presented on the effective parameters of the HF technology. Methodological recommendations are offered for selecting viable in-seam gas drainage technology. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |