Investigating the characteristics of Clifford hypersurfaces and the unit sphere via a minimal immersion in $ S^{n+1} $
Autor: | Ibrahim Al-dayel |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | AIMS Mathematics, Vol 9, Iss 10, Pp 26951-26960 (2024) |
Druh dokumentu: | article |
ISSN: | 2473-6988 |
DOI: | 10.3934/math.20241311?viewType=HTML |
Popis: | In this article, we find the different sufficient conditions for a compact minimal hypersurface $ M $ of the unit sphere $ S^{n+1}, n\in \mathbb{Z}^{+} $ to be the Clifford hypersurface $ S^{\ell }(\sqrt{\frac{\ell }{n}})\times S^{m}(\sqrt{\frac{m}{n}}), $ where $ \ell, m\in \mathbb{Z}^{+}, \; \ell +m = n $ or the sphere $ S^{n} $. This classification is achieved by applying constraints to the tangent and normal components of the immersion. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |