Autor: |
Dylan G. Schmitz, Darryl G. Thelen, Stephanie G. Cone |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Micromachines, Vol 15, Iss 1, p 32 (2023) |
Druh dokumentu: |
article |
ISSN: |
2072-666X |
DOI: |
10.3390/mi15010032 |
Popis: |
Shear wave tensiometry is a noninvasive method for directly measuring wave speed as a proxy for force in tendons during dynamic activities. Traditionally, tensiometry has used broadband excitation pulses and measured the wave travel time between two sensors. In this work, we demonstrate a new method for tracking phase velocity using shaped excitations and measurements from a single sensor. We observed modulation of phase velocity in the Achilles tendon that was generally consistent with wave speed measures obtained via broadband excitation. We also noted a frequency dependence of phase velocity, which is expected for dispersive soft tissues. The implementation of this method could enhance the use of noninvasive wave speed measures to characterize tendon forces. Further, the approach allows for the design of smaller shear wave tensiometers usable for a broader range of tendons and applications. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|