Ground states for a modified capillary surface equation in weighted Orlicz-Sobolev space

Autor: Guoqing Zhang, Huiling Fu
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Electronic Journal of Differential Equations, Vol 2015, Iss 85,, Pp 1-18 (2015)
Druh dokumentu: article
ISSN: 1072-6691
Popis: In this article, we prove a compact embedding theorem for the weighted Orlicz-Sobolev space of radially symmetric functions. Using the embedding theorem and critical points theory, we prove the existence of multiple radial solutions and radial ground states for the following modified capillary surface equation $$\displaylines{ -\operatorname{div}\Big(\frac{|\nabla u|^{2p-2}\nabla u} {\sqrt{1+|\nabla u|^{2p}}}\Big) +T(|x|)|u|^{\alpha-2}u=K(|x|)|u|^{s-2}u,\quad u>0,\; x\in\mathbb{R}^{N},\cr u(|x|)\to 0,\quad\text{as } |x|\to \infty, }$$ where $N\geq3$, $1
Databáze: Directory of Open Access Journals