Learning to combine multiple string similarity metrics for effective toponym matching

Autor: Rui Santos, Patricia Murrieta-Flores, Bruno Martins
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: International Journal of Digital Earth, Vol 11, Iss 9, Pp 913-938 (2018)
Druh dokumentu: article
ISSN: 1753-8947
1753-8955
17538947
DOI: 10.1080/17538947.2017.1371253
Popis: Several tasks related to geographical information retrieval and to the geographical information sciences involve toponym matching, that is, the problem of matching place names that share a common referent. In this article, we present the results of a wide-ranging evaluation on the performance of different string similarity metrics over the toponym matching task. We also report on experiments involving the usage of supervised machine learning for combining multiple similarity metrics, which has the natural advantage of avoiding the manual tuning of similarity thresholds. Experiments with a very large dataset show that the performance differences for the individual similarity metrics are relatively small, and that carefully tuning the similarity threshold is important for achieving good results. The methods based on supervised machine learning, particularly when considering ensembles of decision trees, can achieve good results on this task, significantly outperforming the individual similarity metrics.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje