Weak Darboux property and transitivity of linear mappings on topological vector spaces

Autor: V.K. Maslyuchenko, V.V. Nesterenko
Jazyk: English<br />Ukrainian
Rok vydání: 2013
Předmět:
Zdroj: Karpatsʹkì Matematičnì Publìkacìï, Vol 5, Iss 1, Pp 79-88 (2013)
Druh dokumentu: article
ISSN: 2075-9827
2313-0210
DOI: 10.15330/cmp.5.1.79-88
Popis: It is shown that every linear mapping on topological vector spaces always has weak Darboux property, therefore, it is continuous if and only if it is transitive. For finite-dimensional mapping $f$ with values in Hausdorff topological vector space the following conditions are equivalent: (i) $f$ is continuous; (ii) graph of $f$ is closed; (iii) kernel of $f$ is closed; (iv) $f$ is transition map.
Databáze: Directory of Open Access Journals