Impact of Measurement Uncertainty on Fault Diagnosis Systems: A Case Study on Electrical Faults in Induction Motors
Autor: | Simone Mari, Giovanni Bucci, Fabrizio Ciancetta, Edoardo Fiorucci, Andrea Fioravanti |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Sensors, Vol 24, Iss 16, p 5263 (2024) |
Druh dokumentu: | article |
ISSN: | 24165263 1424-8220 |
DOI: | 10.3390/s24165263 |
Popis: | Classification systems based on machine learning (ML) models, critical in predictive maintenance and fault diagnosis, are subject to an error rate that can pose significant risks, such as unnecessary downtime due to false alarms. Propagating the uncertainty of input data through the model can define confidence bands to determine whether an input is classifiable, preferring to indicate a result of unclassifiability rather than misclassification. This study presents an electrical fault diagnosis system on asynchronous motors using an artificial neural network (ANN) model trained with vibration measurements. It is shown how vibration analysis can be effectively employed to detect and locate motor malfunctions, helping reduce downtime, improve process control and lower maintenance costs. In addition, measurement uncertainty information is introduced to increase the reliability of the diagnosis system, ensuring more accurate and preventive decisions. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |