Autor: |
Songbai Song, Xiaoyan Song, Yan Kang |
Jazyk: |
angličtina |
Rok vydání: |
2017 |
Předmět: |
|
Zdroj: |
Entropy, Vol 19, Iss 5, p 189 (2017) |
Druh dokumentu: |
article |
ISSN: |
1099-4300 |
DOI: |
10.3390/e19050189 |
Popis: |
Two methods based on the principle of maximum entropy (POME), the ordinary entropy method (ENT) and the parameter space expansion method (PSEM), are developed for estimating the parameters of a four-parameter exponential gamma distribution. Using six data sets for annual precipitation at the Weihe River basin in China, the PSEM was applied for estimating parameters for the four-parameter exponential gamma distribution and was compared to the methods of moments (MOM) and of maximum likelihood estimation (MLE). It is shown that PSEM enables the four-parameter exponential distribution to fit the data well, and can further improve the estimation. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|