Autor: |
Jinglei Wang, Yu Yao, Xiaoshan Liu, Guiqiang Liu, Zhengqi Liu |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
IEEE Photonics Journal, Vol 15, Iss 1, Pp 1-6 (2023) |
Druh dokumentu: |
article |
ISSN: |
1943-0655 |
DOI: |
10.1109/JPHOT.2023.3234535 |
Popis: |
Achieving actively tunable metamaterial absorption is a significant development direction. Phase-transition materials have attracted growing interest for the use in nanophotonics owing to their flexibility. In this work, we firstly demonstrate a wideband terahertz refractory absorber that achieves more than 90% absorptance in the range of 1.71--3.31 THz. The metal composing the structure is refractory metal, which could function in high-temperature conditions and complex electromagnetic environment. Then, we incorporate phase-change material vanadium dioxide (VO2) film to this refractory absorber, realizing high reflection of more than 93% in the metallic state, while the wideband perfect absorption peak over 98% is obtained in the insulating state. Calculated results show that metamaterial absorber obtains switchable functions. Furthermore, the tunable absorber has polarization-insensitive behavior. So, our designed absorber with dynamic tunable characteristics provides flexibility to adjust the absorption performance and has significant value in application. The proposed architecture offers a novel method for creating dynamic and multi-functional photonic devices in phase-change materials. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|