Autor: |
Qin Guo, Xianghua Liu, Peixin Ye |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Journal of Inequalities and Applications, Vol 2024, Iss 1, Pp 1-14 (2024) |
Druh dokumentu: |
article |
ISSN: |
1029-242X |
DOI: |
10.1186/s13660-024-03077-6 |
Popis: |
Abstract We investigate the regression problem in supervised learning by means of the weak rescaled pure greedy algorithm (WRPGA). We construct learning estimator by applying the WRPGA and deduce the tight upper bounds of the K-functional error estimate for the corresponding greedy learning algorithms in Hilbert spaces. Satisfactory learning rates are obtained under two prior assumptions on the regression function. The application of the WRPGA in supervised learning considerably reduces the computational cost while maintaining its powerful generalization capability when compared with other greedy learning algorithms. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|