Plant microRNAs and their role in defense against viruses: a bioinformatics approach

Autor: López Camilo, Zapata Andrés, Neme Rafik, Pérez-Quintero Álvaro L
Jazyk: angličtina
Rok vydání: 2010
Předmět:
Zdroj: BMC Plant Biology, Vol 10, Iss 1, p 138 (2010)
Druh dokumentu: article
ISSN: 1471-2229
DOI: 10.1186/1471-2229-10-138
Popis: Abstract Background microRNAs (miRNAs) are non-coding short RNAs that regulate gene expression in eukaryotes by translational inhibition or cleavage of complementary mRNAs. In plants, miRNAs are known to target mostly transcription factors and are implicated in diverse aspects of plant growth and development. A role has been suggested for the miRNA pathway in antiviral defense in plants. In this work, a bioinformatics approach was taken to test whether plant miRNAs from six species could have antiviral activity by targeting the genomes of plant infecting viruses. Results All plants showed a repertoire of miRNAs with potential for targeting viral genomes. The viruses were targeted by abundant and conserved miRNA families in regions coding for cylindrical inclusion proteins, capsid proteins, and nuclear inclusion body proteins. The parameters for our predicted miRNA:target pairings in the viral genomes were similar to those for validated targets in the plant genomes, indicating that our predicted pairings might behave in-vivo as natural miRNa-target pairings. Our screening was compared with negative controls comprising randomly generated miRNAs, animal miRNAs, and genomes of animal-infecting viruses. We found that plant miRNAs target plant viruses more efficiently than any other sequences, but also, miRNAs can either preferentially target plant-infecting viruses or target any virus without preference. Conclusions Our results show a strong potential for antiviral activity of plant miRNAs and suggest that the miRNA pathway may be a support mechanism to the siRNA pathway in antiviral defense.
Databáze: Directory of Open Access Journals