Autor: |
Wissem Methani, Edit Pál, Sándor Lipcsei, Dávid Ugi, Zoltán Pászti, István Groma, Péter Jenei, Zoltán Dankházi, Robert Kun |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Batteries, Vol 8, Iss 8, p 80 (2022) |
Druh dokumentu: |
article |
ISSN: |
2313-0105 |
DOI: |
10.3390/batteries8080080 |
Popis: |
In this work, a comprehensive investigation of amorphous and crystalline modification of identical electrode active material as a thin-film electrode for a future all-solid-state Li-ion battery application is presented and discussed. Using the proposed micro-battery system, we aim to unravel the effect of the crystallinity of the positive electrode material on the intrinsic durability of all-solid-state thin-film Li-ion batteries during prolonged electrochemical cycling. We demonstrate the preparation, structural-, nanomechanical and electrochemical characteristics of molybdenum (VI) oxide (MoO3) thin-film cathodes based on their different crystallinity. The nanomechanical properties of the electrode layers were determined using nanoindentation along with acoustic emission studies. Based on the electrochemical test results, as-prepared thin films that did not go under any heat treatment showed the best performance and stability throughout cycling around 50 μAh initial capacity when cycled at C/2. This suits well their nanomechanical properties, which showed the highest hardness but also the highest flexibility in comparison with the heat-treated layers with lower hardness, high brittleness, and numerous cracks upon mechanical loads. According to our results, we state that amorphous-type electrode materials are more durable against electro-chemo-mechanical-aging related battery performance loss in all-solid-state Li-ion batteries compared to their crystalline counterparts. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|